Topics in topology: The signature theorem and some of its applications
The author discusses several exciting topological developments that took place during the fifties decade which radically changed the way we think about many issues. Topics covered: Poincare duality, Thom isomorphism, Euler, Chern and Pontryagin classes, cobordisms groups, signature formula.
This book provides an excellent detailed review of an important aspect of the geometric program, namely, the role of representation theory of affine Kac-Moody algebras (or loop algebras).
In a detailed reconstruction of the genesis of Feynman diagrams the author reveals that their development was constantly driven by the attempt to resolve fundamental problems concerning the uninterpretable infinities that arose in quantum as well as classical theories of electrodynamic phenomena. Accordingly, as a comparison with the graphical representations that were in use before Feynman diagrams shows, the resulting theory of quantum electrodynamics, featuring Feynman diagrams, differed significantly from earlier versions of the theory in the way in which the relevant phenomena were conceptualized and modelled.
Optimization and Optimal Control: Theory and Applications
Optimization and optimal control are the main tools in decision making. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. “Optimization and Optimal Control: Theory and Applications” brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems.
This is an introduction to geometrical topics that are useful in applied mathematics and theoretical physics, including manifolds, metrics, connections, Lie groups, spinors and bundles, preparing readers for the study of modern treatments of mechanics, gauge fields theories, relativity and gravitation. The order of presentation corresponds to that used for the relevant material in theoretical physics: the geometry of affine spaces, which is appropriate to special relativity theory, as well as to Newtonian mechanics, is developed in the first half of the book, and the geometry of manifolds, which is needed for general relativity and gauge field theory, in the second half.