Differential Forms on Singular Varieties: De Rham and Hodge Theory Simplified
Differential Forms on Singular Varieties: De Rham and Hodge Theory Simplified uses complexes of differential forms to give a complete treatment of the Deligne theory of mixed Hodge structures on the cohomology of singular spaces. This book features an approach that employs recursive arguments on dimension and does not introduce spaces of higher dimension than the initial space.
This volume presents a systematic and unified treatment of Leray-Schauder continuation theorems in nonlinear analysis. In particular, fixed point theory is established for many classes of maps, such as contractive, non-expansive, accretive, and compact maps, to name but a few. This book also presents coincidence and multiplicity results.
This real-world, application-oriented outline introduces non-math majors to: linear equations and linear growth; exponential functions and geometric growth; sets; and counting. Following this material are applications using the formulas derived in topics such as: descriptive statistics; basic probability theory; graphs and networks; voting systems and apportionment; interest calculation; and systems of linear equations and games theory.
This book focuses on the algebraic-topological aspects of probability theory, leading to a wider and deeper understanding of basic theorems, such as those on the structure of continuous convolution semigroups and the corresponding processes with independent increments. The method applied within the setting of Banach spaces and of locally compact Abelian groups is that of the Fourier transform.
This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples.